Saccades can be aimed at the spatial location of targets flashed during pursuit.

نویسندگان

  • J Schlag
  • M Schlag-Rey
  • P Dassonville
چکیده

1. If an eccentric, stationary target is flashed while a subject is performing an eye movement in the dark, can this subject make a saccade to the location in space where the target briefly appeared? Different predictions result from alternative hypotheses regarding the manner in which saccade goals are determined. Retinal error being defined as the vector from the eye position at the time of the flash to the position of the target, the retinal-error hypothesis predicts that the saccade vector will be equal to the retinal-error vector. This hypothesis assumes that the oculomotor system ignores the eye displacement between target presentation and saccade. If so, the target will be missed. In contrast, the spatial-error hypothesis predicts that the eye displacement is taken into account by the brain to calculate the target's physical location to which, therefore, a correct saccade could be aimed. 2. At issue is the generality of a fundamental principle of ocular targeting. Previous studies have established that, if the movement is saccadic, eye displacement is used by the oculomotor system to calculate the target's physical location. In the case of pursuit, perceptual experiments on humans suggest that eye displacement is taken into account although its velocity is underestimated. However, in a recent study McKenzie and Lisberger reported that saccade trajectories starting during pursuit conform to the retinal error hypothesis. In other words, velocity underestimation is close to 100%. 3. Although McKenzie and Lisberger's results are very clear, they might have depended on particular experimental conditions. The issue was reinvestigated in a situation facilitating the discrimination of stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of optokinetic nystagmus on the perceived position of briefly flashed targets

Stimuli flashed briefly around the time of an impending saccade are mislocalized in the direction of the saccade and also compressed towards the saccadic target. Similarly, targets flashed during pursuit eye movements are mislocalized in the direction of pursuit. Here, we investigate the effects of optokinetic nystagmus (OKN) on visual localization. Subjects passively viewed a wide-field drifti...

متن کامل

Visual sensitivity for luminance and chromatic stimuli during the execution of smooth pursuit and saccadic eye movements.

Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduce...

متن کامل

Human head-free gaze saccades to targets flashed before gaze-pursuit are spatially accurate.

Previous studies have shown that accurate saccades can be generated, in the dark, that compensate for movements of the visual axis that result from movements of either the eyes alone or the head alone that intervene between target presentation and saccade onset. We have carried out experiments with human subjects to test whether gaze saccades (gaze = eye-in-space = eye-in-head + head-in-space) ...

متن کامل

The default allocation of attention is broadly ahead of smooth pursuit.

When moving through our environment, it is vital to preferentially process positions on our future path in order to react quickly to critical situations. During smooth pursuit, attention may be directed ahead with either a focused locus or a broad bias. We examined the 2D spatial extent of attention during a smooth pursuit task using both saccade (SRT) and manual (MRT) reaction times as measure...

متن کامل

Judging relative positions across saccades

When components of a shape are presented asynchronously during smooth pursuit, the retinal image determines the perceived shape, as if the parts belong to the moving object that the eyes are pursuing. Saccades normally shift our gaze between structures of interest, so there is no reason to expect anything to have moved with the eyes. We therefore decided to examine how people judge the separati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 64 2  شماره 

صفحات  -

تاریخ انتشار 1990